如图,长方形ABCO的顶点A、C、O都在坐标轴上,点B的坐标为(8,3),M为AB的中点.
(1)试求点M的坐标和△AOM的周长;
(2)若P是OC上的一个动点,它以每秒1个单位长度的速度从点C出发沿射线CO方向匀速运动,设运动时间为t秒(t>0).
①若△POM的面积等于△AOM的面积的一半,试求t的值;
②是否存在某一时刻t,使△POM是等腰三角形?若存在,求出此时t的值;若不存在,试说明理由.
如图,点N是△ABC的边BC延长线上的一点,∠ACN=2∠BAC,过点A作AC的垂线交CN于点P.
(1)若∠APC=30°,求证:AB=AP;
(2)若AP=8,BP=16,求AC的长;
(3)若点P在BC的延长线上运动,∠APB的平分线交AB于点M.你认为∠AMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP的大小.
如图,在△ABC中,CE⊥BA的延长线于E,BF⊥CA的延长线于F,M为BC的中点,分别连接ME、MF、EF.
(1)若EF=3,BC=8,求△EFM的周长;
(2)若∠ABC=28°,∠ACB=48°,求△EFM的三个内角的度数.
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,
求证:a2+b2=c2
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.
∵S四边形ADCB=S△ACD+S△ABC=b2+
ab.
又∵S四边形ADCB=S△ADB+S△DCB=c2+
a(b﹣a).
∴b2+
ab=
c2+
a(b﹣a),∴a2+b2=c2.
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠ABC=90°.
求证:a2+b2=c2.
证明:
如图,在8×8网格纸中,每个小正方形的边长都为1.
(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(-4,4),(-1,3),并写出点B的坐标为 ;
(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;
(3)在y轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.