游客
题文

如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

计算:-27-(-17)

计算:(-13)+(-8)

请画出一条数轴,然后在所得的数轴上把下列各数表示出来:
3,―4,―2,0,―1,1;并用“<”连接.

把下列各数填在相应的大括号内:
15, , 0.81, -3, ,-, 0, 50%
负数集合{…}
正整数集合{…}
非负数集合{…}
有理数集合{…}

如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
(1) 分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2) 设AD=x,建立关于x的方程模型,求出x的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号