如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
已知抛物线经过(-1,0),(0,-3),(2,-3)三点.
⑴求这条抛物线的表达式;
⑵写出抛物线的开口方向、对称轴和顶点坐标
已知一次函的图象过点(0,5)
⑴ 求m的值,并写出二次函数的关系式;
⑵ 求出二次函数图象的顶点坐标、对称轴.
(10分)在平面直角坐标系内,A、B、C三点的坐标分别是A(5,0)、B(0,3)、C(5,3),O 为坐标原点,点E在线段BC上,若△AEO为等腰三角形, 求点E的坐标.(画出图象,不需要写计算过程)
如图,在△ABC中,O是AC上的一个动点(不与点A、C重合),过O点作直线MN//BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。(1)试说明:OE=OF。
(2)当O点运动到何处时,四边形AECF是矩形?
并证明你的结
论。
已知:如图所示,四边形ABCD是矩形,对角线AC,BD相交于点O,CE//DB,交AB的延长线于点E,AC与CE相等吗?请说明理由。