(本小题满分12分)设,
分别是椭圆
的左右焦点,M是C上一点且
与x轴垂直,直线
与C的另一个交点为N.
(Ⅰ)若直线MN的斜率为,求C的离心率;
(Ⅱ)若直线MN在y轴上的截距为2,且,求a,b.
已知,a,b,c均为正数,且a+b+c=1.
求证:+
+
≥9.
(1)已知x>0,y>0,且+
=1,求x+y的最小值;
(2)已知x<,求函数y=4x-2+
的最大值;
(3)若x,y∈(0,+∞)且2x+8y-xy=0,求x+y的最小值.
已知x>0,y>0,z>0.
求证:≥8.
某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?
已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,其值为正,而当x∈(-∞,-2)∪(6,+∞)时,其值为负.
(1)求实数a,b的值及函数f(x)的表达式;
(2)设F(x)=-f(x)+4(k+1)x+2(6k-1),问k取何值时,函数F(x)的值恒为负值?