如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.
正方形ABCD中,点E、F为对角线BD上两点,DE=BF
(1)四边形AECF是什么四边形? 为什么?
(2)若EF=4cm,DE=BF=2cm,求四边形AECF的周长。
如图,一次函数的图像与反比例函数
的图像相交于A、B两点,
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像回答:当x取何值时
(3)根据图像回答:当x取何值时
已知:如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:DE=BF
已知一次函数y=kx+b的图象经过点(-1,-4),且与正比例函数y=x+1的图象相交于点(2,a),求
(1)a的值
(2)k,b的值
(3)这两个函数图象与x轴所围成的三角形面积.
某商场用36000元购进A、B两种商品,销售完后共获利6000元,其进价和售价如下表:
A |
B |
|
进价(元/件) |
120 |
100 |
售价(元/件) |
138 |
120 |
(1)该商场购进A、B两种商品各多少件;(注:获利售价
进价)
(2)商场第二次以原进价购进A、B两种商品.购进种商品的件数不变,而购进
种商品的件数是第一次的2倍,
种商品按原售价出售,而
种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,B种商品最低售价为每件多少元