下图是用传送带传送行李的示意图。图中水平传送带AB间的长度为8m,它的右侧是一竖直的半径为0.8m的1/4圆形光滑轨道,轨道底端与传送带在B点相切。若传送带向右以6m/s的恒定速度匀速运动,当在传送带的左侧A点轻轻放上一个质量为4kg的行李箱时,箱子运动到传送带的最右侧如果没被捡起,能滑上圆形轨道,而后做往复运动直到被捡起为止。已知箱子与传送带间的动摩擦因数为0.1,重力加速度大小为g=10m/s2,求:
⑴箱子从A点到B点所用的时间及箱子滑到圆形轨道底端时对轨道的压力大小;
⑵若行李箱放上A点时给它一个5m/s的水平向右的初速度,到达B点时如果没被捡
起,则箱子离开圆形轨道最高点后还能上升多大高度?在给定的坐标系中定性画出箱子从A点到最高点过程中速率v随时间t变化的图象。
如图所示,纸平面内O点有一离子源,不断向纸面内各个方向放出离子,已知离子速度V=5X106m/s,荷质比=2X107C/kg。空间中存在以粒子源为圆心垂直于纸面向里半径R1=0.5m的匀强磁场B1,在这个磁场外面还存在着以粒子源为圆心垂直于纸面向外的圆环形匀强磁场B2,外径为R2,B1= B2=0.5T,(设粒子在运动过程中不相
撞,忽略重力和粒子间的相互作用)求:
(1)粒子在B1中运动时的轨道半径为多少
(2)为了使粒子不离开磁场区域,R2的最小值
(3)求粒子从O点出发再回到O点的最短时间。
如图所示,空间内存在只够大的水平向右的匀强电场区域,场强E=4x103V/m,有一带电量为5x10-6C质量为2g的小物体从离桌面右边缘2m处的A位置由静止释放,经过一段时间,小物体落在水平地面上的B位置,已知桌面高度为0.8m,B与桌子右边缘的水平距离为3.2m,求:
(1)物体离开桌面右边缘时速度
(2)小物体与桌面间的摩擦系数
如图所示,一水平直轨道CF与半径为R的半圆轨道ABC在C点平滑连接,AC在竖直方向,B点与圆心等高。一轻弹簧左端固定在F处,右端与一个可视为质点的质量为的小铁块甲相连。开始时,弹簧为原长,甲静止于D点。现将另一与甲完全相同的小铁块乙从圆轨道上B点由静止释放,到达D点与甲碰撞,并立即一起向左运动但不粘连,它们到达E点后再返回,结果乙恰回到C点。已知CD长为L1,DE长为L2,EC段均匀粗糙,ABC段和EF段均光滑,弹簧始终处于弹性限度内。
(1)求直轨道EC段与物块间动摩擦因素.
(2)要使乙返回时能通过最高点A,可在乙由C向D运动过程中过C点时,对乙
加一水平向左恒力,至D点与甲碰撞前瞬间撤去此恒力,则该恒力至少多大?
如图所示,在平面直角坐标系XOY内,第I象限存在沿Y轴正方向的匀强电场,第IV象限内存在垂直于坐标平面向里的匀强磁场,磁感应强度大小设为B1(未知),第III象限内也存在垂直于坐标平面向里的匀强磁场B2(未知)。一质量为m的电子(电量为e,不计重力),从Y轴正半轴上Y=h处的M点,以速度v0垂直于Y轴射入电场,经X轴上X=处的P点进入第IV象限磁场,然后从Y轴上Q点进入第III象限磁场,OQ=OP,最后从O点又进入电场。
(1)求匀强电场的场强大小E;
(2)求粒子经过Q点时速度大小和方向;
(3)求B1与B2之比为多少。
如图所示,有一足够长斜面,倾角,一小物块从斜面顶端A处由静止下滑,到B处后,受一与物体重力大小相等的水平向右恒力作用,物体最终停在C点(C点未画出)。若
.物块与斜面间动摩擦因素
,
,
,
求:(1)物体到达B点的速度多大?
(2)BC距离多大?