【2015·福建·22】如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B。一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动。A、C两点间距离为h,重力加速度为g。
(1)求小滑块运动到C点时的速度大小vc;
(2)求小滑块从A点运动到C点过程中克服摩擦力做的功Wf;
(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点。已知小滑块在D点时的速度大小为vD,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小vp.
在如图所示xoy坐标系第一象限的三角形区域(坐标如图中所标注和
)内有垂直于纸面向外的匀强磁场,在x 轴下方有沿+y方向的匀强电场,电场强度为E。将一个质量为m、带电量为+q的粒子(重力不计)从P(0,-a)点由静止释放。由于x轴上存在一种特殊物质,使粒子每经过一次x轴后(无论向上和向下)速度大小均变为穿过前的
倍。
(1)欲使粒子能够再次经过x轴,磁场的磁感应强度B0最小是多少?
(2)在磁感应强度等于第(1)问中B0的情况下,求粒子在磁场中的运动时间。
如图所示,有一个可视为质点的质量为m =" 1" kg的小物块,从光滑平台上的A点以v0 =" 3" m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M =" 3" kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ = 0.3,圆弧轨道的半径为R = 0.5m,C点和圆弧的圆心连线与竖直方向的夹角θ = 53°,不计空气阻力,取重力加速度为g="10" m/s2.求:
⑴ AC两点的高度差;
⑵ 小物块刚要到达圆弧轨道末端D点时对轨道的压力;
⑶ 要使小物块不滑出长木板,木板的最小长度.
()
两根相距L=0.5m的足够长的金属导轨如图甲所示放置,他们各有一边在同一水平面上,另一边垂直于水平面。金属细杆ab、cd的质量均为m=0.05kg,电阻均为R=1.0Ω,它们与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数μ=0.5,导轨电阻不计。整个装置处于磁感应强度大小B=1.0T、方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下沿导轨向右运动时,从某一时刻开始释放cd杆,并且开始计时,cd杆运动速度随时间变化的图像如图乙所示(在0~1s和2~3s内,对应图线为直线。g=10m/s2)。求:
(1)在0~1s时间内,回路中感应电流I1的大小;
(2)在0~3s时间内,ab杆在水平导轨上运动的最大速度Vm;
(3)已知1~2s内,ab杆做匀加速直线运动,写出1~2s内拉力F随时间t变化的关系式,并在图丙中画出在0~3s内,拉力F随时间t变化的图像。(不需要写出计算过程,只需写出表达式和画出图线)
如图所示,水平桌面上有一轻弹簧,左端固定在A点,弹簧处于自然状态时其右端位于B点.水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8m的圆环剪去了左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R.用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点.用同种材料、质量为m2=0.2kg的物块将弹簧也缓慢压缩到C点释放,物块经过B点后其位移与时间的关系为x=6t-2t2,物块从桌面右边缘D点飞离桌面后,由P点沿圆轨道切线落入圆轨道.g=10m/s2,求:
(1)BP间的水平距离;
(2)判断m2能否沿圆轨道到达M点;
(3)释放后m2运动过程中克服摩擦力做的功.
我国 “海监75”号和“海监84”号为维护我国领海主权,奉命赴南海黄岩岛海域开始对我国渔船执行护渔任务.某日清晨,海面上有薄雾.我国的一艘渔船正在匀速行驶,到达A处时,船老大突然发现后侧面不远处有菲巡逻舰正在向他们靠近,并预计还有40min就会追上渔船,于是立即向在C处海域执行任务的我国某海监渔政船发出求援信号,我海监执法人员立即推算出40min后的渔船位置应在D处,马上调好航向,沿CD直线方向从静止出发恰好在40min内到达D处,如图所示,海监船运动的速度、时间图象如图所示,
求:
(1)海监船走的航线CD的长度.
(2)假设该海监船以最大速度航行时轮机输出的总功率为2.5×103kW,则舰船受海水的阻力有多大?
(3)假设舰体受海水的阻力不变舰体质量为7000吨,则在第36分钟时,轮机通过涡轮对海水的推力为多大?方向如何?