(本小题满分13分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了若干名学生的体检表,并得到如下直方图:
(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
年级名次 是否近视 |
1~50 |
951~1000 |
近视 |
41 |
32 |
不近视 |
9 |
18 |
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为,求
的分布列和数学期望.
附:
P(K2≥k) |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
已知数列的前
项和为
,且
.
(1)求数列的通项公式;
(2)设,
,求使
成立的最小的正整数
的值.
已知,设关于x的不等式
+
的解集为A.
(1)若,求
;
(2)若, 求
的取值范围。
已知曲线C:
(t为参数), C
:
(
为参数)。
(1)分别求出曲线C,C
的普通方程;
(2)若C上的点P对应的参数为
,Q为C
上的动点,求
中点
到直线
(t为参数)距离的最小值及此时Q点坐标.
(本小题满分12分)已知函数,其中a,b∈R,e=2.718 28 为自然对数的底数.
(1)设是函数
的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数在区间(0,1)内有零点,求a的取值范围.
(本小题满分12分)已知为抛物线
的焦点,点
为其上一点,点M与点N关于x轴对称,直线与抛物线交于异于M,N的A,B两点,且
(1)求抛物线方程和N点坐标;
(2)判断直线中,是否存在使得
面积最小的直线
,若存在,求出直线
的方程和
面积的最小值;若不存在,说明理由。