某地粮食需求量逐年上升,下表是部分统计数据:
年份(年) |
2002 |
2004 |
2006 |
2008 |
2010 |
需求量 (万吨) |
236 |
246 |
257 |
276 |
286 |
(1)利用所给数据求年需求量与年份之间的回归直线方程=
x+
.
(2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.
已知数列中,
.
(1)求数列的通项公式
;
(2)证明:.
设抛物线的焦点为F,准线为
,过点F作一直线与抛物线交于A、B两点,再分别过点A、B作抛物线的切线,这两条切线的交点记为P.
(1)证明:直线PA与PB相互垂直,且点P在准线上;
(2)是否存在常数,使等式
恒成立?若存在,求出
的值;若不存在,说明理由.
已知数列的前
项和为
,
,且
.
(1)计算;
(2)猜想的表达式,并证明.
在直四棱柱ABCD—A1B1C1D1中,已知底面四边形
ABCD是边长为3的菱形,且DB=3,A1A=2,点E
在线段BC上,点F在线段D1C1上,且BE=D1F=1.
(1)求证:直线EF∥平面B1D1DB;
(2)求二面角F—DB—C的余弦值.
设均为锐角,且
.求证:
.