游客
题文

阅读理解:
如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.
将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.

简单应用:
(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是         
(2)当图③中的∠BCD=120°时,∠AEB′=       °;
(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有     个(包含四边形ABCD).
拓展提升:
(4)当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

(本题12分)如图,过点A(0,3)的直线l1与x轴交于点B,tan∠ABO=.过点A的另一直线l2:y=-x+b (t>0)与x轴交于点Q,点P是射线AB上的一个动点,过P作PH⊥x轴于点H,设PB=5t.

(1)求直线l1的函数解析式;
(2)当点P在线段AB上运动时,设△PHQ的面积为S(S≠0),求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)当点P 在射线AB上运动时,是否存在这样的t值,使以P,H,Q为顶点的三角形与△AOQ相似?若存在,直接写出所有满足条件的t值所对应的P点坐标;若不存在,请说明理由.

(本题10分)如图1,抛物线y=-x2+2bx+c(b>0)与y轴交于点C,点P为抛物线顶点,分别作点P,C关于原点O的对称点P′,C′,顺次连接四点得四边形PC P′C′.

(1)当b=c=1时,求顶点P的坐标;
(2)当b=2,四边形PC P′C′为矩形时(如图2),求c的值;
(3)请你探究:四边形PCP′C′能否成为正方形?若能,求出符合条件的b,c的值;若不能,请说明理由.

(本题10分)如图,AB是⊙O的直径,点C在圆上,P是AB延长线上一点,连结AC,PC,过点O作AC的垂线交AC于点D,交⊙O于点E.若AC=PC,AB=8,∠P=30°.

(1)求证:PC是⊙O的切线;
(2)求阴影部分的面积.

(本题8分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地, 两车同时出发,沿同一条道路匀速行驶.设行驶时间为t(h),两车之间的距离为s(km),图中折线A-B-C-D表示s与t之间的函数关系.
(1)甲、乙两地相距km,两车出发后h相遇;
(2)通过计算说明,当快车到达乙地时,慢车还要多少时间才能到达甲地?

(本题8分)为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的平均时间应不少于1小时.为了解学生参加户外活动的情况,某县教育行政部门对部分学生参加户外活动的时间进行了抽样调查,并将调查结果绘制成下列两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
(1)这次抽样共调查了名学生,并补全条形统计图;
(2)计算扇形统计图中表示户外活动时间0.5小时的扇形圆心角度数;
(3)本次调查学生参加户外活动的平均时间是否符合要求?(写出判断过程)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号