(12分)如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g。求:
(1)通过cd棒电流的方向和区域I内磁场的方向;
(2)当ab棒在区域Ⅱ内运动时,cd棒消耗的电功率;
(3)ab棒开始下滑的位置离EF的距离;
(4)ab棒开始下滑至EF的过程中回路中产生的热量。
某人在地面上以20m/s的速度竖直向上抛出一个石块,石块运动到离抛出点15m处所经历的时间是多少?(空气阻力不计,g=10m/s2).
如图所示为一轻质弹簧的长度l和弹力F大小的关系图象,试由图线确定:
(1)弹簧的原长;
(2)弹簧的劲度系数;
(3)弹簧长为0.20m时弹力的大小.
如图所示,一木板B放在水平面上,木块A放在B的上面,A的右端通过一不可伸长的轻绳,固定在直立墙壁上,用力F向左拉动B,使它以速度v做匀速运动,这时绳的张力为FT.下列说法正确的是()
A.木板B受到的滑动摩擦力大小可能为FT |
B.水平面受到的滑动摩擦力大小为FT |
C.木块A受到的滑动摩擦力大小为FT |
D.若木块B以速度2v做匀速运动,则应使拉力等于F |
如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5T.质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆a b,测得最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨距为L=2m,重力加速度g取l0m/s2,轨道足够长且电阻不计.求:
(1)杆a b下滑过程中感应电流的方向及R=0时最大感应电动势E的大小;
(2)金属杆的质量m和阻值r;
(3)当R=4Ω时,求回路瞬时电功率每增加1W的过程中合外力对杆做的功W.
如图所示,一带电微粒质量为m=2.0×10﹣11kg、电荷量q=+1.0×10﹣5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为θ=60°.已知偏转电场中金属板长L=2cm,圆形匀强磁场的半径R=10
cm,重力忽略不计.求:
(1)带电微粒经U1=100V的电场加速后的速率;
(2)两金属板间偏转电场的电场强度E;
(3)匀强磁场的磁感应强度的大小.