如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.
(1)快艇从港口B到小岛C需要多长时间?
(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.
(本小题满分10分)已知两点,求
(1)直线的斜率和直线
的方程;
(2)已知,求直线
的倾斜角
的范围.
(本小题满分10分)选修4-5:不等式选讲
设函数.
(1)解不等式:;
(2)若对一切实数
均成立,求
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,曲线
的参数方程为
,(
为参数),以原点
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1) 求曲线的普通方程与曲线
的直角坐标方程;
(2) 设为曲线
上的动点,求点
到
上点的距离的最小值.
(本小题满分10分)选修4-1:几何证明选讲
如图,是⊙
的直径,
是弧
的中点,
,垂足为
,
交
于点
.
(1)求证:;
(2)若,⊙
的半径为6,求
的长.
(本小题满分12分)已知圆的圆心为
,
,半径为
,圆
与离心率
的椭圆
的其中一个公共点为
,
、
分别是椭圆的左、右焦点.
(1)求圆的标准方程;
(2)若点的坐标为
,试探究直线
与圆
能否相切,若能,求出椭圆
和直线
的方程;若不能,请说明理由.