如图所示,半径为R的半圆柱形玻璃柱,放置在直角坐标系xoy中,圆心与坐标系原点O重合,在第二象限中坐标为(-1.5R,R)的点A处,放置一个激光器(图中未画出),发出的两束细激光束a和b,其中,激光束a平行于x轴射向玻璃砖,激光束b沿AO方向射向玻璃砖。已知激光在玻璃中的折射率为
,试作出激光束a和b通过玻璃砖的光路图,并证明a和b射出玻璃砖后是否相交。
如图甲所示,两根足够长的平行光滑金属导轨MN、PQ被固定在水平面上,导轨间距L=0.6m,两导轨的左端用导线连接电阻R1及理想电压表,电阻r=2Ω的金属棒垂直于导轨静止在AB处;右端用导线连接电阻R2,已知R1=2Ω,R2=1Ω,导轨及导线电阻均不计.在矩形区域CDEF内有竖直向上的磁场,CE=0.2m,磁感应强度随时间的变化如图乙所示.在t=0时刻开始,对金属棒施加一水平向右的恒力F,从金属棒开始运动直到离开磁场区域的整个过程中电压表的示数保持不变.求:
(1)t=0.1s时电压表的示数;
(2)恒力F的大小;
(3)从t=0时刻到金属棒运动出磁场的过程中整个电路产生的热量Q;
(4)求整个运动过程中通过电阻R2的电量q.
如图所示为质谱仪上的原理图,M为粒子加速器,电压为U1=5000V;N为速度选择器,磁场与电场正交,磁感应强度为B1=0.2T,板间距离为d=0.06m;P为一个边长为l的正方形abcd的磁场区,磁感应强度为B2=0.1T,方向垂直纸面向外,其中dc的中点S开有小孔,外侧紧贴dc放置一块荧光屏.今有一比荷为=108C/kg的正离子从静止开始经加速后,恰好通过速度选择器,从a孔以平行于ab方向进入abcd磁场区,正离子刚好经过小孔S 打在荧光屏上.求:
(1)粒子离开加速器时的速度v;
(2)速度选择器的电压U2;
(3)正方形abcd边长l.
如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直,磁场的磁感应强度为B.线圈匝数为n,电阻为r,长为l1,宽为l2,转动角速度为ω.线圈两端外接阻值为R的电阻和一个理想交流电流表.求:
(1)线圈转至图示位置时的感应电动势;
(2)电流表的读数;
(3)从图示位置开始计时,感应电动势的瞬时值表达式.
如图(甲)所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为2Ω的定值电阻R,将一根质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=2Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若棒以1m/s的初速度向右运动,同时对棒施加水平向右的拉力F作用,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,图(乙)为安培力与时间的关系图象.试求:
(1)金属棒的最大速度;
(2)金属棒的速度为3m/s时的加速度;
(3)求从开始计时起2s内电阻R上产生的电热.
如图所示,在平面直角坐标系xoy的第四象限有垂直纸面向里的匀强磁场,一质量为m=5.0×10﹣8kg、电量为q=1.0×10﹣6C的带电粒子,从静止开始经U0=10V的电压加速后,从P点沿图示方向进入磁场,已知OP=30cm,(粒子重力不计,sin37°=0.6,cos37°=0.8),求:
(1)带电粒子到达P点时速度v的大小
(2)若磁感应强度B=2.0T,粒子从x轴上的Q点离开磁场,求QO的距离
(3)若粒子不能进入x轴上方,求磁感应强度B'满足的条件.