(满分14分)如图,抛物线经过(
),
(
),
(
)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点,使
的值最小,求点
的坐标;
(3)点为
轴上一动点,在抛物线上是否存在点
,使得以
四点为顶点的四边形为平行四边形?若存在,请直接写出点
的坐标.
有100米长的篱笆材料,想围成一个矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,现请你设计矩形仓库的长和宽,使它符合要求.
如图,某建筑工程队利用一面墙(墙的长度不限),用40米长的篱笆围成一个长方形的仓库.
(1)求长方形的面积是150平方米,求出长方形两邻边的长;
(2)能否围成面积220平方米的长方形?请说明理由.
已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.
(1)求实数m的取值范围;
(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.
已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.
(1)方程有两个相等的实数根;
(2)方程有两个相反的实数根;
(3)方程的一个根为0.
(6分)如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,
(1)求∠ACB的度数;
(2)HE=AF.