“切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级.A:1小时以内,B:1小时-1.5小时,C:1.5小时-2小时,D:小时以上.根据调查结果绘制了如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:
(1)该校共调查了_________名学生;
(2)请将条形统计图补充完整;
(3)表示等级A的扇形圆心角的度数是____________;
(4)在此次问卷调查中,甲、乙两班各有2人平均每天课外作业时间都是2小时以上,从这4人中任选2人去参加座谈,用列表或树状图的方法求选出的2人来自不同班级的概率.
如图,已知 为锐角 内部一点,过点 作 于点 , 于点 ,以 为直径作 ,交直线 于点 ,连接 , , 交 于点 .
(1)求证: .
(2)连接 , ,当 , 时,在点 的整个运动过程中.
①若 ,求 的长.
②若 为等腰三角形,求所有满足条件的 的长.
(3)连接 , , 交 于点 ,当 , 时,记 的面积为 , 的面积为 ,请写出 的值.
温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排 人生产乙产品.
(1)根据信息填表:
产品种类 |
每天工人数(人 |
每天产量(件 |
每件产品可获利润(元 |
甲 |
|
|
15 |
乙 |
|
|
|
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.
(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润 (元 的最大值及相应的 值.
如图, 是 的 边上一点,连接 ,作 的外接圆,将 沿直线 折叠,点 的对应点 落在 上.
(1)求证: .
(2)若 , , ,求 的长.
如图,抛物线 交 轴正半轴于点 ,直线 经过抛物线的顶点 .已知该抛物线的对称轴为直线 ,交 轴于点 .
(1)求 , 的值.
(2) 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 , .设点 的横坐标为 , 的面积为 ,记 .求 关于 的函数表达式及 的范围.
现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:
(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.
(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的 ,求甲公司需要增设的蛋糕店数量.