天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.
(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.
(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?
已知:△ABC中,∠A=90°,AB=AC,D为BC的中点,
(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;
(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.
如图所示,直线与
分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样.
(1)根据图像分别求出L1,L2的函数关系式.
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.
在平面直角坐标系中,A(-1,5),B(-2,1),C(-4,3)
(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(2)写出点A1,B1,C1的坐标;
(3)求出△ABC的面积.
如图,已知AC∥DF,且BE=CF.
(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是___________________;
(2)添加条件后,证明△ABC≌△DEF.
一次函数的图象经过A(3,5)和B(-4,-9).
(1)求这个函数的解析式;
(2)若点(a,2)在该函数的图象上,试求a的值。