一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,用列表或画树状的方法求两次摸出的球都是白球的概率.
在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点 处安置测倾器,量出高度 ,测得旗杆顶端 的仰角 ,量出测点 到旗杆底部 的水平距离 ,根据测量数据,求旗杆 的高度.(参考数据: , ,
如图,在平面直角坐标系中,抛物线 与 轴交于点 、 (点 在点 的左侧),该抛物线的对称轴与直线 相交于点 ,与 轴相交于点 ,点 在直线 上(不与原点重合),连接 ,过点 作 交 轴于点 ,连接 .
(1)如图①所示,若抛物线顶点的纵坐标为 ,求抛物线的解析式;
(2)求 、 两点的坐标;
(3)如图②所示,小红在探究点 的位置发现:当点 与点 重合时, 的大小为定值,进而猜想:对于直线 上任意一点 (不与原点重合), 的大小为定值.请你判断该猜想是否正确,并说明理由.
如图,随着我市铁路建设进程的加快,现规划从 地到 地有一条笔直的铁路通过,但在附近的 处有一大型油库,现测得油库 在 地的北偏东 方向上,在 地的西北方向上, 的距离为 米.已知在以油库 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库 是否会受到影响?请说明理由.
已知,如图,一次函数 、 为常数, 的图象与 轴、 轴分别交于 、 两点,且与反比例函数 为常数且 的图象在第二象限交于点 . 轴,垂足为 ,若 .
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式: 的解集.
如图,在平面直角坐标系 中,以点 为圆心的圆分别交 轴的正半轴于点 ,交 轴的正半轴于点 .劣弧 的长为 ,直线 与 轴、 轴分别交于点 、 .
(1)求证:直线 与 相切;
(2)求图中所示的阴影部分的面积(结果用 表示)