如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.
(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;
(2)若点P在该抛物线上移动,当点p在第一象限内时,过点p作PQ⊥x轴于点Q,连接OP.若以O、P、Q为定点的三角形与以B、C、E为定点的三角形相似,直接写出点P的坐标;
(3)若点M(﹣4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.
解下列不等式,并将解集分别用数轴表示出来:
(1)(2)
丰富的图形世界里有奇妙的数量关系,让我们通过下面这些几何体开始神奇的探索之旅.
观察:下面这些几何体都是简单几何体,请您仔细观察.
统计:每个几何体都会有棱(棱数为E)、面(面数为F)、顶点(顶点数为V),现将有关数据统计,完成下表.
几何体 |
a |
b |
c |
d |
e |
棱数(E) |
6 |
9 |
15 |
||
面数(F) |
4 |
5 |
5 |
6 |
|
顶点数(V) |
4 |
5 |
8 |
发现:(1)简单几何中,;
(2)简单几何中,每条棱都是个面的公共边;
(3)在正方体中,每个顶点处有条棱,每条棱都有个顶点,所以有23
.
应用:有一个叫“正十二面体”的简单几何体,它有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.请问它有条棱,个顶点,每个顶点处有条棱.
问题:山中有古寺,不知道住着多少僧人,只知道用餐时,他们三个人合用一只碗吃饭,四个人合用一只碗喝汤,不多不少共用了224只碗.这个寺内一共有多少名僧人?
为了解决这个问题,同学们分别想了许多办法.同学甲直接设寺内有僧人名,同学乙则设用去饭碗
只.你知道这两名同学分别是如何解决问题的吗?请你分别写出他们的解题过程.
如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)请你数一数,图中有多少个小于平角的角;
(2)求出∠BOD的度数;
(3)试判断OE是否平分∠BOC,并说明理由.
(1)在图a空白的方格中,画出阴影部分的图形沿虚线AB翻折后的图形;
(2)在图b空白的方格中,画出阴影部分的图形绕点C旋转180°后的图形.