游客
题文

如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣12,16),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.

(1)直接写出线段BO的长;
(2)求直线BD解析式;
(3)若点N在直线BD上,在x轴上是否存在点M,使以M、N、E、D为顶点的四边形是平行四边形?若存在,请求出一个满足条件的点M的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

(本题满分8分)
(1)解方程:3x2+7x+2=0.
(2)解不等式组

(本题满分8分)计算:
(1)(-3)0-+|1-|
(2)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.

(本小题满分7分)如图,平面直角坐标系中,点ABCx轴上,点DEy轴上,OA=OD=2,OC=OE=4,2OB=OD,直线AD与经过BEC三点的抛物线交于FG两点,与其对称轴交于M.点P为线段FG上一个动点(与FG不重合),
PQy轴与抛物线交于点Q.


(1)求经过BEC三点的抛物线的解析式;
(2)是否存在点P,使得以PQM为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由;

(本小题满分7分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,
(1)找出当AP+BP能得到最小值时,点P的位置,并证明
(2)求出AP+BP最小值

(本小题满分6分)在直角坐标平面中,O为坐标原点,二次函数的图象与x轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象的顶点为M,求AM的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号