小明周末与父母一起到遂宁湿地公园进行数学实践活动,在 处看到 、 处各有一棵被湖水隔开的银杏树,他在 处测得 在北偏西 方向, 在北偏东 方向,他从 处走了20米到达 处,又在 处测得 在北偏东 方向.
(1)求 的度数;
(2)求两颗银杏树 、 之间的距离(结果保留根号).
某服装店以每件30元的价格购进一批 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设 恤的销售单价提高 元.
(1)服装店希望一个月内销售该种 恤能获得利润3360元,并且尽可能减少库存,问 恤的销售单价应提高多少元?
(2)当销售单价定为多少元时,该服装店一个月内销售这种 恤获得的利润最大?最大利润是多少元?
已知平面直角坐标系中,点 , 和直线 (其中 , 不全为 ,则点 到直线 的距离 可用公式 来计算.
例如:求点 到直线 的距离,因为直线 可化为 ,其中 , , ,所以点 到直线 的距离为: .
根据以上材料,解答下列问题:
(1)求点 到直线 的距离;
(2)在(1)的条件下, 的半径 ,判断 与直线 的位置关系,若相交,设其弦长为 ,求 的值;若不相交,说明理由.
我市于2021年5月 日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出两幅不完整的统计图表,请根据统计图表回答下列问题:
类别 |
频数 |
频率 |
不了解 |
10 |
|
了解很少 |
16 |
0.32 |
基本了解 |
|
|
很了解 |
4 |
|
合计 |
|
1 |
(1)根据以上信息可知: , , , ;
(2)补全条形统计图;
(3)估计该校1000名初中学生中“基本了解”的人数约有 人;
(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.
如图,在 中,对角线 与 相交于点 ,过点 的直线 与 、 的延长线分别交于点 、 .
(1)求证: ;
(2)请再添加一个条件,使四边形 是菱形,并说明理由.