如图,正比例函数
的图象与反比例函数
的图象交于
、
两点,过点
作
垂直
轴于点
,连结
.若
的面积为
.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
如图1,四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=.
(1)求CD边的长;
(2)如图2,将直线CD边沿箭头方向平移,交DA于点P,交CB于点Q (点Q运动到点B停止),设DP=x,四边形PQCD的面积为,求
与
的函数关系式,并求出自变量
的取值范围.
“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:
(1)小张如何进货,使进货款恰好为1300元?
(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.
某班开展安全知识竞赛活动,班长将所有同学的成绩分成四类,并制作了如下的统计图表:
根据图表信息,回答下列问题:
(1)该班共有学生人;表中a=;
(2)将丁类的五名学生分别记为A、B、C、D、E,现从中随机挑选两名学生参加学校的决赛,请借助树状图、列表或其他方式求B一定能参加决赛的概率.
如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.