游客
题文

夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:
(1)求甲、乙两种空调每台的进价;
(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式;
(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.

科目 数学   题型 解答题   难度 中等
知识点: 二元一次不定方程的应用
登录免费查看答案和解析
相关试题

已知,如图1,抛物线过点且对称轴为直线点B为直线OA下方的抛物线上一动点,点B的横坐标为m.

(1)求该抛物线的解析式:
(2)若的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)如图2,过点B作直线轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标,若不存在,请说明理由.

如图,已知AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC=PE·PO .

(1)求证:PC是⊙O的切线;
(2)若OE:EA=1:2,PA=6,求⊙O的半径;
(3)在(2)问下,求的值。

某中学库存960套旧课桌椅准备修理。现有甲、乙两个木工小组都想承接这项业务。经协商后得知:甲小组单独修理这批桌椅比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元。
(1)求甲、乙两个小组每天各修理桌櫈多少套?
(2)在修理过程中,学校要委派一名修理工进行质量监督,并由学校负担他每天的生活补助10元,现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理。你认为哪种方案既省时又省钱?试比较说明。

如图,在等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,∠B,P为下底BC边上一点(不与B、C重合),连结AP,过P点作PE交DC于E,使得∠APE=∠B.

(1)求证:△ABP∽△PCE;
(2)求腰AB的长;
(3)在底边BC上是否存在一点P,使得DE:EC=5:3.如果存在,求出BP的长;如果不存在,请说明理由。

如图,一次函数的图象与反比例函数的图象相交于A、B两点。

(1)利用图中的条件,求反比例函数和一次函数的表达式;
(2)根据图象写出使一次函数的值大于反比例函数的值的的取值范围;
(3)求△ABO的面积。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号