如图1,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以2m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.
(1)赛道的长度是 m,甲的速度是 m/s;
(2)经过多少秒时,甲、乙两人第二次相遇?
(3)若从甲、乙两人同时开始出发到2分钟为止,甲、乙共相遇了 次.2分钟时,乙距池边B1B2的距离为多少米.
已知:关于x的方程
(1)当m取什么值时,原方程没有实数根;
(2)对m选取一个你喜欢的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.
是两块完全重合的等边三角形纸片(如图①所示),O是AC(或EF)的中点,
不动,将
绕O点顺时针转
.
(1)试分别说明是多少度时,点F在
外部、BC上、内部(不证明)?
(2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于P,EG与CA或延长线交于Q),分别写出OP与OQ的数量关系,并从图②、③中选一种情况给予证明).
小红按某种规律写出4个方程:①;②
;③
;④
.
(1)上述四个方程根的情况如何?为什么?
(2)按此规律,请你写出一个两根都为整数的方程,并解这个方程.
计算:
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点的坐标分别为B(1,0),
C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.