游客
题文

如图,抛物线y=-x2+bx+c的顶点为D,与x轴交于A(-1,0)、B(3,0),与y轴交于点C.

(1)求该抛物线的解析式;
(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长;
(3)在(2)的条件下,当四边形OBMC的面积最大时,在抛物线的对称轴上是否存在点Q,使得△CNQ为直角三角形?若存在,直接写出点Q的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

某超市上月销售一种优质新米,平均售价为10元/千克,月销售量为1000千克。经市场调查,若将该种新米价格调低至元/千克,则本月销售量(千克)与(元/千克)之间满足,且当=7时,=2000;当=5时,=4000.
(1)求之间的函数关系式。
(2)已知该种新米上月的进价为5元/千克,本月的进价为4元/千克,要使本月销售该种新米获利比上月增加20%,同时又要让顾客得到实惠,则该种新米的价格应定为多少元?

某商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率

如图,在⊙0中,AD=BC求证:AB=CD.

已知在Rt△ABC,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE⊥AN于E。

(1)求证:DE=BD-CE
(2)如将直线AN绕A点沿顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN于D,CE⊥AN于E,那么DE、DB、CE之间存在等量关系吗?若存在,请证明你的结论?

已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.
求证:(1)△ABC≌△DEF (2)BE=CF.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号