已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.
(1)求证:△ABD≌△CAE;
(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.
某大学校园内一商店,销售一种进价为每件20元的台灯.销售过程中发现,每月销售量(件)与销售单价
(元)之间的关系可近似的看作一次函数:
.
(1)设此商店每月获得利润为
(元),当销售单价定为多少元时,每月可获得最大利润?【利
润=(销售单价-进价)×销售量】
(2)如果此商店想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种台灯的销售单价不得高于32元,如果此商店想要每月获得的利润不低于2000元,那么商店每月的成本最少需要多少元?【成本=进价×销售量】
已知正方形纸片ABCD.如图1,将正方形纸片折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)请你找到一个与
相似的三角形,并证明你的结论;
(2)当AB=2,点P位于CD中点时,请借助图2画出折叠后的示意图,并求CG的长.
如图,已知AB是⊙O的直径,点H在⊙O上,E是的中点,过点E作EC⊥AH,交AH的延长线于点C.连结AE,过点E作EF⊥AB于点F.(1)求证:CE是⊙O的切线;
(2)若FB=2, tan∠CAE=
,求OF的长.
如图,平行四边形ABCD中,E是BC的中点.请你在线段AB上截取BF=2AF,连结EF交BD于点G,求的值.
如图,一风力发电装置竖立在小山顶上,小山的高BD=30m.从水平面上一点C测得风力发电装置的顶端A的仰角∠DCA=60°,测得山顶B的仰角∠DCB=30°,求风力发电装置的高AB的长.