如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE= ;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
先化简,再求值:
,其中.
计算: .
如图1,已知抛物线
与轴交于点
,过点
的直线
与抛物线
交于另一点
,点
,
到直线
的距离相等.
(1)求直线的表达式;
(2)将直线向下平移
个单位,平移后的直线
与抛物线
交于点
,
(如图
,判断直线
是否平分线段
,并说明理由;
(3)已知抛物线,
,
为常数)和直线
有两个交点
,
,对于任意满足条件的
,线段
都能被直线
平分,请直接写出
与
,
之间的数量关系.
已知正方形,点
在直线
上.
(1)若是直线
上一点,且
,求证:
;(请利用图1所给的图形加以证明)
(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;
(3)若点在直线
上,且
平分
,探索线段
、
、
之间的数量关系,并说明理由.
如图,已知是
的直径,
,
是
上两点,
.过点
作
交
的延长线于点
.
(1)求证:是
的切线;
(2)若
,,求
的直径.