某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
(1)根据图示填写下表;
班级 |
平均数 |
中位数 |
众数 |
九(1) |
85 |
85 |
|
九(2) |
80 |
|
|
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差.
已知在△ABC中,三边长a,b,c满足等式a2+2b2+c2﹣2ab﹣2bc=0,试判断该三角形是什么三角形,并加以证明.
已知正实数a、b、c满足方程组,求a+b+c的值.
计算.
如图,大长方形是由四个小长方形拼成的,请根据此图填空:x2+(p+q)x+pq=x2+px+qx+pq=( )( ).
说理验证
事实上,我们也可以用如下方法进行变形:
x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+()= =( )( ).
于是,我们可以利用上面的方法进行多项式的因式分解.
尝试运用
例题把x2+3x+2分解因式.
解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).
请利用上述方法将下列多项式分解因式:
(1)x2﹣7x+12;(2)(y2+y)2+7(y2+y)﹣18.
在△ABC中,已知三边a、b、c满足a4+2a2b2+b4﹣2a3b﹣2ab3=0.试判断△ABC的形状.