如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
当x为多少时,x-的值与7-
的值相等.
先化简,再求值:的值,其中x=-2,y=2.
解下列方程(每小题4分,计16分)
(1)、(2)、4(x-1)-3(20-x)=5(x-2)
(3)、 (4)、
已知:甲、乙两车分别从相距300千米的A、B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)请直接写出甲、乙两车离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并标明自变量x的取值范围;
(2)它们在行驶的过程中有几次相遇?并求出每次相遇的时间.
如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E,F分别是AB,AC边上的点,且DE⊥DF.
(1)如图1,试说明;
(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.