综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(-2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.
(1)求抛物线W的解析式及顶点D的坐标;
(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;
(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:
兴趣班 |
人数 |
百分比 |
美术 |
10 |
|
书法 |
30 |
|
体育 |
|
|
音乐 |
20 |
|
根据统计图表的信息,解答下列问题:
(1)直接写出本次调查的样本容量和表中 , , 的值;
(2)将折线图补充完整;
(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?
如图,在河对岸有一棵大树 ,在河岸 点测得 在北偏东 方向上,向东前进 到达 点,测得 在北偏东 方向上,求河的宽度(精确到 .参考数据: , .
如图, 为 的直径,点 在 上.
(1)尺规作图:作 的平分线,与 交于点 ;连接 ,交 于点 (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);
(2)探究 与 的位置及数量关系,并证明你的结论.
如图,抛物线 与 轴交于点 和 ,与 轴交于点 .
(1)求抛物线的表达式;
(2)作射线 ,将射线 绕点 顺时针旋转 交抛物线于另一点 ,在射线 上是否存在一点 ,使 的周长最小.若存在,求出点 的坐标;若不存在,请说明理由;
(3)在(2)的条件下,点 为抛物线的顶点,点 为射线 上的一个动点,且点 的横坐标为 ,过点 作 轴的垂线 ,垂足为 ,点 从点 出发沿 方向运动,直线 随之运动,当 时,直线 将四边形 分割成左右两部分,设在直线 左侧部分的面积为 ,求 关于 的函数表达式.
如图, 是以 为直径的 的切线, 为切点, 平分 ,弦 交 于点 , .
(1)求证: 是等腰直角三角形;
(2)求证: ;
(3)求 的值.