一块矩形塑料板ABCD,AD=10,AB=4.将一块足够大的直角三角板PHF的直角顶点P置于AD边上(不于A、D 重合,任意移动P点和三角板PHF的位置,如图(1).
(1)△PEF是否存在这样的位置,使两边直角边分别通过B、C两点?如图(2),若存在,请求出AP的长度,若不存在,请说理由.
(2)PH始终通过B点时,PF交BC于E点,交DC的延长线于Q点,△PHF是否存在这样的位置,使得CE=2?若能请求出这时AP的长度;若不能,请说明理由.
(成都)(本小题满分10分)如图,一次函数的图象与反比例函数
(
为常数,且
)的图象交于A(1,a)、B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
(成都)(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线(
)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:
与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);
(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;
(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
(自贡)观察下表
我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:
(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n格的“特征多项式”为 ;
(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,
①求x,y的值;
②在此条件下,第n格的特征是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.
(内江)(1)填空:= ;
= ;
= .
(2)猜想:= (其中n为正整数,且
).
(3)利用(2)猜想的结论计算:.
(乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.