根据阳泉市教育局3月份通知,从2016年中考起,九年级学生信息技术考试成绩统计入中考总分,我县某中学为了提高八年级学生学习信息技术的积极性,组织了“信息技术技能竞赛”活动,八年级甲、乙两班根据初赛成绩,各选出5名选手参加复赛,这些选手的复赛成绩(满分为100分)如图所示:
(1)根据统计图填写下表:
班级 平均数 众数 方差
甲班 85 85
乙班 160
(2)根据上表可知,两个班选手成绩较稳定的是 ;
(3)选手小明说:“这次竞赛我得了80分,在我们班选手中成绩排名属下游!(后两名)”观察统计图,求出两班选手成绩的中位数,说明小明是哪个班的学生?
(4)学校要给其中一个班发集体优胜奖,你认为发给哪个班合适?请综合考评,说明理由.
(1)找到几组适合方程的
、
的值;
(2)找到几组适合方程的
、
的值;
(3)找出一组、
的值,使它们同时适合方程
和
;
(4)根据上面的结论,你能直接写出二元一次方程组的解吗?
小强在解方程组时,遇到了“奇怪”的题目。
解: 由②得y=1-6x③将③代入②得6x+(1-6x)=1,即1=1,由于x消失,小明无法继续再解这个方程组,难道是这个方程组有问题吗?你能根据他的解题过程,说明出现这样结果的原因吗?
小明和小丽两人同时到一家水里店买水果。小明买了1千克苹果和2千克梨,共花了13元;小丽买了2千克苹果和1千克苹果和1千克梨,共花了14元,苹果和梨的价格各为多少?
根据题意,小明列出的方程组:
而小丽列出的是:,交流后,他们发现两个方程组不同,于是展形了争论,都说自己的是正确的,而对方是错误的,他们列的方程组正确吗?你认为他们产生的分歧的原因是什么?
如图,已知矩形的边长
.某一时刻,动点
从
点出发沿
方向以
的速度向
点匀速运动;同时,动点
从
点出发沿
方向以
的速度向
点匀速运动,问:
(1)经过多少时间,的面积等于矩形
面积的
?
(2)是否存在时间t,使的面积达到3.5cm2,若存在,求出时间t,若不存在,说明理由。
观察下列等式:
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
根据上述各式反映的规律填空,使式子称为“数字对称等式”:
(1)① 52×=×25;
②×396=693×.
(2)设这类等式左边两位数的十位数字为,个位数字为
,且2≤
≤9,写出表示“数字对称等式”一般规律的式子(含
、
),并证明.