如图,在四边形ABCD中,已知BE平分∠ABC,∠AEB=∠ABE,∠D=70°.
(1)说明:AD∥BC;
(2)求∠C的度数.
(1)计算:
(2)解方程组:
(3)解不等式组:.(将不等式组解集在数轴上表示出来)
已知直线y=x+3与x轴相交于点A,与y轴相交于点B,P是直线AB上的一个动点,过P点分别作x轴、y轴的垂线PE,PF,如图所示,
(1)若P为线段AB的中点,请求出OP的长度;
(2)若四边形PEOF是正方形时,求出P点坐标;
(3)P点在AB上运动过程中,EF是否有最小值?若有,请求出这个最小值;若没有请说明理由.
分别以△ABC的二边AC,BC为边向三角形外側作正方形ACDE和正方形BCFG,记△ABC,△DCF的面积分别为S1和S2.
①如图1,当∠ACB=90°时,求证:S1=S2;
②如图2,当∠ACB≠90°时.S1与S2是否仍然相等,请说明理由.
某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;
(2)求总利润w关于x的函数关系式;
(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.