(本小题满分10分)选修4-1,几何证明选讲
如图AB是直径,AC是
切线,BC交
与点E.
(Ⅰ)若D为AC中点,求证:DE是切线;
(Ⅱ)若,求
的大小.
(本小题满分12分)已知函数f(X)=X+2Xtan-1,X
〔-1,
〕其中
(-
,
)
(1)当=-
时,求函数的最大值和最小值
(2)求的取值的范围,使Y=f(X)在区间〔-1,
〕上是单调函数
(本小题满分12分)若函数满足:对定义域内任意两个不相等的实数
,都有
,则称函数
为H函数.已知
,且
为偶函数.
(1) 求的值;
(2) 求证:为H函数;
(3) 试举出一个不为H函数的函数,并说明理由.
(本小题满分12分)如图:A、B两城相距100 km,某天燃气公司计划在两地之间建一天燃气站D 给A、B两城供气. 已知D地距A城x km,为保证城市安全,天燃气站距两城市的距离均不得少于10km . 已知建设费用y (万元)与A、B两地的供气距离(km)的平方和成正比,当天燃气站D距A城的距离为40km时, 建设费用为1300万元.(供气距离指天燃气站距到城市的距离)
(1)把建设费用y(万元)表示成供气距离x (km)的函数,并求定义域;
(2)天燃气供气站建在距A城多远,才能使建设供气费用最小.,最小费用是多少?
(本小题满分12分)求经过直线与直线
的交点M,且分别满足下列条件的直线方程:
(1)与直线平行;(2)与直线
垂直.
设cos=-
,tan
=
,
<
<
, 0<
<
求
-
的值