(1)从宏观现象中总结出来的经典物理学规律不一定都能适用于微观体系。但是在某些问题中利用经典物理学规律也能得到与实际比较相符合的结论。
例如,玻尔建立的氢原子模型,仍然把电子的运动看做经典力学描述下的轨道运动。他认为,氢原子中的电子在库仑力的作用下,绕原子核做匀速圆周运动。已知电子质量为m,电荷为e,静电力常量为k,氢原子处于基态时电子的轨道半径为r1。
(1)氢原予处于基态时,电子绕原子核运动,可等效为环形电流,求此等效电流值。
(2)在微观领域,动量守恒定律和能量守恒定律依然适用。
a.己知光在真空中的速度为c,氢原子在不同能级之间跃迁时,跃迁前后可认为质量不变,均为m。设氢原子处于基态时的能量为E1(E1<O),当原子处于第一激发态时的能量为E1/4,求原子从第一激发态跃迁到基态时,放出光子的能量和氢原子的反冲速度。
b.在轻核聚变的核反应中,两个氘核()以相同的动能Eo=0.35MeV做对心碰撞,假设该反应中释放的核能全部转化为氦核(
)和中子(
)的动能。已知氘核的质量mD=2.0141u,中子的质量mn=1.0087u,氦核的质量MHe=3.0160u,其中1u相当于931MeV。在上述轻核聚变的核反应中生成的氦核和中子的动能各是多少MeV(结果保留1位有效数字)?
在游乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角α=530,绳的悬挂点O距水面的高度为H=3m,绳长不确定,不考虑空气阻力和绳的质量,浮台露出水面的高度不计。取重力加速度g=10m/s2,sin530=0.8,cos530=0.6。
(1)若绳长=2m,选手摆到最低点时速度的大小;
(2)选手摆到最低点时对绳拉力的大小;
(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳却认为绳越短,落点距岸边越远。请通过计算说明你的观点
如图所示,长为1.8 m的轻质细线一端固定于O点,另一端系一质量m="0.5" kg的小球.把小球拉到A点由静止释放,O、A在同一水平面上,B为小球运动的最低点.忽略空气阻力,取B点的重力势能为零,重力加速度g="10" m/s2求:
(1)小球受到重力的大小;
(2)小球在A点的重力势能;
(3)小球运动到B点时速度的大小.
如图所示,小菲在超市里推车购物,若小车和货物的总质量为20kg,小车在水平推力的作用下由静止开始沿水平地面做匀加速直线运动,加速度大小为0.5m/s2,小车运动了6s,忽略小车所受的阻力,求此过程中
(1)推力的大小
(2)小车末速度的大小
(3)小车位移的大小
如图所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m=1kg的物体.物体与斜面间动摩擦因数µ=0.25,现用轻细绳将物体由静止沿斜面向上拉动.拉力F =10N,方向平行斜面向上.经时间t=4s绳子突然断了,求:
(1)绳断时物体的速度大小.
(2)从绳子断了开始到物体再返回到斜面底端的运动时间.(sin37°=0.60,cos37°=0.80,g=10m/s2)
放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示. 取重力加速度g=10m/s2.试利用两图线求:
(1)物块在0~9s内发生的位移;
(2)物块在3~6s的加速度大小;
(3)物块与地面间的动摩擦因数.