(本小题满分12分)已知向量,函数
(1)求的对称轴。
(2)当时,求
的最大值及对应的
值。
已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1,B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.
已知函数f(x)=2x2﹣(a+2)x+a.
(Ⅰ)当a>0时,求关于x的不等式f(x)>0解集;
(Ⅱ)当x>1时,若f(x)≥﹣1恒成立,求实数a的最大值.
已知椭圆C:+
=1(a>b>0)的离心率为
,其中左焦点F(﹣2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段的中点M在圆x2+y2=1上,求m的值.
在等差数列{an}中,公差d=2,a2是a1与a4的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设,数列
的前n项和为Tn,求Tn.
已知在等比数列{an}中,a1=1,且a2是a1和a3﹣1的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=2n﹣1+an(n∈N*),求{bn}的前n项和Sn.