如图所示,质量为m的小物块在粗糙水平桌面上做直线运动,经距离l后以速度υ飞离桌面,最终落在水平地面上.已知l=1.4m,υ="3.0" m/s,m=0.10kg,物块与桌面间的动摩擦因数μ=0.25,桌面高h=0.45m,不计空气阻力,重力加速度g取10m/s2。
求:(1)小物块落地点距飞出点的水平距离s;
(2)小物块落地时的动能Ek;
(3)小物块的初速度大小υ0.
过山车是游乐场中常见的设施.如图是一种过山车的简易模型,它由水平轨道和在竖直平面内的两个圆形轨道组成,B、C分别是两个圆形轨道的最低点.半径R1=2.0 m、R2=1.4 m.一个质量为m=1.0 kg的小球(视为质点),从轨道的左侧A点以v0=12.0 m/s的初速度沿轨道向右运动.A、B间距L1=6.0 m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够大,圆形轨道间不相互重叠.重力加速度取g=10 m/s2,计算结果保留小数点后一位数字.试求:
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少;
(3)在满足(2)的条件下,如果要使小球不脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离.
如图所示,在倾角为θ的斜面顶端A处以初速度v0水平抛出一小球,落在斜面上的某一点B处,设空气阻力不计,求:
(1)小球从A运动到B处所需的时间、落到B点的速度及A、B间的距离.
(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?这个最大距离是多少?
如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高度也为h,坡道底端与台面相切。小球A从坡道顶端由静止开始滑下,到达水平光滑的台面与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半,两球均可视为质点,忽略空气阻力,重力加速度为g。求
(1)小球A刚滑至水平台面的速度vA;
(2)A、B两球的质量之比mA:mB。
如图所示,质量为m的小物块在粗糙水平桌面上做直线运动,经距离l后以速度v飞离桌面,最终落在水平地面上。已知l =1.4m,v =3.0m/s,m = 0.10kg,物块与桌面间的动摩擦因数u =0.25,桌面高h =0.45m。不计空气阻力,重力加速度g取10m/s2。求
(1)小物块落地点距飞出点的水平距离s
(2)小物块落地时的动能Ek
(3)小物块的初速度大小v0
如题图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴重合,转台以一定角速度
匀速旋转。一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与
之间的夹角
为60°。重力加速度大小为g。
(1)若,小物块受到的摩擦力恰好为零,求
;
(2)若,且
,求小物块受到的摩擦力大小和方向。