游客
题文

设定义在R上的函数f(x)对于任意x,y都有f(x+y)=f(x)+f(y)成立,且f(1)=﹣2,当x>0时,f(x)<0.
(1)判断f(x)在R上的单调性,并加以证明;
(2)当﹣2015≤x≤2015时,不等式f(x)≤k恒成立,求实数k的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

求斜率为,且与坐标轴所围成的三角形的周长是12的直线的方程。

已知函数
(1)若上单调递增,求的取值范围;
(2)若定义在区间D上的函数对于区间上的任意两个值总有以下不等式成立,则称函数为区间上的 “凹函数”.试证当时,为“凹函数”.

已知函数是偶函数.
(1) 求的值;
(2) 设,若函数的图象有且只有一个公共点,求实数的取值范围.

已知是一个等差数列,且
(Ⅰ)求的通项;(Ⅱ)求前n项和Sn的最大值.

在三角形中,,求三角形的面积

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号