(本小题满分12分)已知函数=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x−y−12=0。(1)求函数的解析式;(2)求的单调区间和极值。
的顶点,的坐标分别是,,顶点在圆上运动,求的重心的轨迹方程.
如果实数x、y满足x+y-4x+1=0,求的最大值与最小值。
如果直线l将圆平分,且不通过第四象限,求l的斜率的取值范围。
已知圆C的方程为x2+y2+(m-2)x+(m+1)y+m-2=0,根据下列条件确定实数m的取值,并写出相应的圆心坐标和半径。 ⑴圆的面积最小; ⑵圆心距离坐标原点最近。
已知直线l:kx-y-3k=0;圆M:x2+y2-8x-2y+9=0, (1)求证:直线l与圆M必相交; (2)当圆M截l所得弦最长时,求k的值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号