游客
题文

如图(1),OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:

(1)如图(2),在△ABC中,∠ACB是直角,∠B=60°, AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;
(2)如图(3),在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,在(1)中所得结论是否仍然成立?请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

如图,已知中,边上的中点,边上的点(不与端点重合),边上的点,且,延长与直线相交于点点是延长线上的点,且,联结,设.

(1)求关于的函数关系式及其定义域;
(2)联结,当以为半径的和以为半径的外切时,求的正切值;
(3)当相似时,求的长.

已知一次函数的图像和二次函数的图像都经过AB两点,且点Ay轴上,B点的纵坐标为5.

(1)求这个二次函数的解析式;
(2)将此二次函数图像的顶点记作点P,求△ABP的面积;
(3)已知点CD在射线AB上,且D点的横坐标比C点的横坐标大2,点EF在这个二次函数图像上,且CEDFy轴平行,当时,求C点坐标.

如图,在正方形ABCD中,E为对角线AC上一点,联结EBED,延长BEAD于点F.

(1)求证:∠BEC =∠DEC
(2)当CE=CD时,求证:.

某公司组织员工100人外出旅游.公司制定了三种旅游方案供员工选择:
方案一:到A地两日游,每人所需旅游费用1500元;
方案二:到B地两日游,每人所需旅游费用1200元;
方案三:到C地两日游,每人所需旅游费用1000元;
每个员工都选择了其中的一个方案,现将公司员工选择旅游方案人数的有关数据整理后绘制成尚未完成的统计图,根据图提供的信息解答下列问题:

(1)选择旅游方案三的员工有人,将图5补画完整;
(2)选择旅游方案三的女员工占女员工总数的(填“几分之几”);
(3)该公司平均每个员工所需旅游费元;
(4)报名参加旅游的女员工所需旅游费为57200元,参加旅游的女员工有
人.

如图,AB是圆O的直径,作半径OA的垂直平分线,交圆OCD两点,垂足为H,联结BCBD.

(1)求证:BC=BD
(2)已知CD=6,求圆O的半径长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号