如图所示,用一块长L1=2.5m的木板(木板下端有一底座高度与木板A、B相同)在墙和地面间架设斜面,斜面与水平地面的倾角θ可在0~60°间调节后固定。将质量m1=5kg的小物块从斜面顶端静止释放,为避免小物块与地面发生撞击,在地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为l=2m,质量均为m2=10kg(忽略小物块在转角处和底座运动的能量损失)。物块与斜面间的动摩擦因数μ=0.125,物块与木板间的动摩擦因数μ1=0.4,木板与地面间的动摩擦因数μ2=0.1(最大静摩擦力等于滑动摩擦力;重力加速度g=10m/s2)
(1)当θ角增大到多少时,小物块能从斜面开始下滑?(用正切值表示)
(2)当θ增大到37°时,通过计算判断货物是否会从木板B的右端滑落?若能,求货物滑离木板B右端时的速度;若不能,求货物最终停在B板上的位置?(已知sin37°=0.6,cos37°=0.8)
物体从h高处自由下落,它在落到地面前1 s内共下落35 m,求物体下落时的高度及下落时间.
某日有雾的清晨,一艘质量为m=500t的轮船,从某码头由静止起航做直线运动,并保持发动机的输出功率等于额定功率不变,经t0=10min后,达到最大行驶速度vm=20m/s,雾也恰好散开,此时船长突然发现航线正前方s0=480m处,有一只拖网渔船以v=5m/s的速度沿垂直航线方向匀速运动,且此时渔船船头恰好位于轮船的航线上,轮船船长立即下令采取制动措施,附加了制动力F=1.0×105N,结果渔船的拖网刚好越过轮船的航线时,轮船也刚好从该点通过,从而避免了事故的发生,已知渔船连拖网共长L=200m。求:
(1)轮船减速时的加速度a多大?
(2)轮船的额定功率p多大?
(3)发现渔船时,轮船已离开码头多远?
如图所示,长12m的木板质量为50kg,木板置于水平地面上,木板与地面间的动摩擦因数为0.1,质量为50kg的人立于木板左端,木板与人均静止,人以4m/s2的加速度匀加速向右奔跑至板的右端,求:
(1)木板运动的加速度的大小;
(2)人从开始奔跑至到达木板右端所经历的时间;
(3)从人开始奔跑至到达木板右端的过程中由于摩擦所产生的内能。
如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O点处于同一水平线上的P点处有一根光滑的细钉,已知OP =L,在A点给小球一个水平向左的初速度v0,发现小球恰能到达跟P点在同一竖直线上的最高点B,则:
(1)小球到达B点时的速度多大?
(2)若不计空气阻力,则初速度v0多大?
(3)若初速度v0=3,则在小球从A到B的过程中克服空气阻力做了多少功?
) 质量为m=lkg的物体在平行于斜面向上的拉力 F的作用下从斜面底端由静止开始沿斜面向上运动,一段时间后撤去拉力F,其向上运动的v-t图象如图所示,斜面固定不动,与水平地面的夹角(
)。求:
(1)物体与斜面间的动摩擦因数
(2)拉力F的大小;
(3)物体沿斜面向上运动的最大距离