如图1,在平面直角坐标系中,O为坐标原点,直线y=-2x+5与x轴、y轴分别交于C、D两点,与双曲线y=(k≠0,x>0)交于A、B两点.
(1)若B点的横坐标为2,求k的值.
(2)设A点的横坐标为m,B点的横坐标为n,求m与n之间的函数关系式(不要求写出自变量的取值范围)
(3)如图2连结BO,取DO中点M,当以MO、BO、AD的长为三边构成的三角形的面积为时,在y=
(k≠0,x>0)的图象上是否存在一点E,连接CE,BE,使得△BCE是以C为直角顶点的等腰直角三角形.若存在,求E点坐标,若不存在,请说明理由.
【问题情景】
利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ ABC中, AB=3, BC=6,问△ ABC的高 AD与 CE的比是多少?
小聪的计算思路是:
根据题意得: S △ ABC= BC• AD= AB• CE.
从而得2 AD= CE,∴ =
请运用上述材料中所积累的经验和方法解决下列问题:
(1)【类比探究】
如图2,在▱ ABCD中,点 E、 F分别在 AD, CD上,且 AF= CE,并相交于点 O,连接 BE、 BF,
求证: BO平分角 AOC.
(2)【探究延伸】
如图3,已知直线 m∥ n,点 A、 C是直线 m上两点,点 B、 D是直线 n上两点,点 P是线段 CD中点,且∠ APB=90°,两平行线 m、 n间的距离为4.求证: PA• PB=2 AB.
(3)【迁移应用】
如图4, E为 AB边上一点, ED⊥ AD, CE⊥ CB,垂足分别为 D, C,∠ DAB=∠ B, AB= , BC=2, AC= ,又已知 M、 N分别为 AE、 BE的中点,连接 DM、 CN.求△ DEM与△ CEN的周长之和.
已知抛物线 y= a( x﹣1) 2+3( a≠0)与 y轴交于点 A(0,2),顶点为 B,且对称轴 l 1与 x轴交于点 M
(1)求 a的值,并写出点 B的坐标;
(2)有一个动点 P从原点 O出发,沿 x轴正方向以每秒2个单位的速度运动,设运动时间为 t秒,求 t为何值时 PA+ PB最短;
(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点 C,且新抛物线的对称轴 l 2与 x轴交于点 N,过点 C作 DE∥ x轴,分别交 l 1, l 2于点 D、 E,若四边形 MDEN是正方形,求平移后抛物线的解析式.
如图,四边形 ABCD中, MA= MC, MB= MD,以 AB为直径的圆 O过点 M且与 DC延长线相切于点 E.
(1)求证:四边形 ABCD是菱形;
(2)若 AB=4,求 的长(结果请保留π)
某机场为了方便旅客换乘,计划在一、二层之间安装电梯,截面设计图如图所示,已知两层 AD与 BC平行,层高 AB为8米, A、 D间水平距离为5米,∠ ACB=21.5°
(1)通过计算说明身高2.4米的人在竖直站立的情况下,搭乘电梯在 D处会不会碰到头部;
(2)若采用中段加平台设计(如图虚线所示),已知平台 MN∥ BC,且 AM段和 NC段的坡度均为1:2(坡度是指坡面的铅直高度与水平宽度的比),求平台 MN的长度.
(参考数据:sin21.5°= ,cos21.5°= ,tan21.5°= )
某商场试销 A、 B两种型号的台灯,下表是两次进货情况统计:
进货情况 进货次数 |
进货数量(台) |
进货资金(元) |
|
A |
B |
||
第一次 |
5 |
3 |
230 |
第二次 |
10 |
4 |
440 |
(1)求 A、 B两种型号台灯的进价各为多少元?
(2)经试销发现, A型号台灯售价 x(元)与销售数量 y(台)满足关系式2 x+ y=140,此商场决定两种型号台灯共进货100台,并一周内全部售出,若 B型号台灯售价定为20元,求 A型号台灯售价定为多少时,商场可获得最大利润?并通过计算说明商场获得最大利润时的进货方案.