游客
题文

如图1,在平面直角坐标系中,O为坐标原点,直线y=-2x+5与x轴、y轴分别交于C、D两点,与双曲线y=(k≠0,x>0)交于A、B两点.
(1)若B点的横坐标为2,求k的值.
(2)设A点的横坐标为m,B点的横坐标为n,求m与n之间的函数关系式(不要求写出自变量的取值范围)
(3)如图2连结BO,取DO中点M,当以MO、BO、AD的长为三边构成的三角形的面积为时,在y=(k≠0,x>0)的图象上是否存在一点E,连接CE,BE,使得△BCE是以C为直角顶点的等腰直角三角形.若存在,求E点坐标,若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 平行线分线段成比例
登录免费查看答案和解析
相关试题

【问题情景】

利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.

例如:张老师给小聪提出这样一个问题:

如图1,在△ ABC中, AB=3, BC=6,问△ ABC的高 ADCE的比是多少?

小聪的计算思路是:

根据题意得: S ABC 1 2 BCAD 1 2 ABCE

从而得2 ADCE,∴ AD CE 1 2

请运用上述材料中所积累的经验和方法解决下列问题:

(1)【类比探究】

如图2,在▱ ABCD中,点 EF分别在 ADCD上,且 AFCE,并相交于点 O,连接 BEBF

求证: BO平分角 AOC

(2)【探究延伸】

如图3,已知直线 mn,点 AC是直线 m上两点,点 BD是直线 n上两点,点 P是线段 CD中点,且∠ APB=90°,两平行线 mn间的距离为4.求证: PAPB=2 AB

(3)【迁移应用】

如图4, EAB边上一点, EDADCECB,垂足分别为 DC,∠ DAB=∠ BAB 34 BC=2, AC 26 ,又已知 MN分别为 AEBE的中点,连接 DMCN.求△ DEM与△ CEN的周长之和.

已知抛物线 yax﹣1) 2+3( a≠0)与 y轴交于点 A(0,2),顶点为 B,且对称轴 l 1x轴交于点 M

(1)求 a的值,并写出点 B的坐标;

(2)有一个动点 P从原点 O出发,沿 x轴正方向以每秒2个单位的速度运动,设运动时间为 t秒,求 t为何值时 PA+ PB最短;

(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点 C,且新抛物线的对称轴 l 2x轴交于点 N,过点 CDEx轴,分别交 l 1l 2于点 DE,若四边形 MDEN是正方形,求平移后抛物线的解析式.

如图,四边形 ABCD中, MAMCMBMD,以 AB为直径的圆 O过点 M且与 DC延长线相切于点 E

(1)求证:四边形 ABCD是菱形;

(2)若 AB=4,求 BM 的长(结果请保留π)

某机场为了方便旅客换乘,计划在一、二层之间安装电梯,截面设计图如图所示,已知两层 ADBC平行,层高 AB为8米, AD间水平距离为5米,∠ ACB=21.5°

(1)通过计算说明身高2.4米的人在竖直站立的情况下,搭乘电梯在 D处会不会碰到头部;

(2)若采用中段加平台设计(如图虚线所示),已知平台 MNBC,且 AM段和 NC段的坡度均为1:2(坡度是指坡面的铅直高度与水平宽度的比),求平台 MN的长度.

(参考数据:sin21.5°= 9 25 ,cos21.5°= 9 10 ,tan21.5°= 2 5

某商场试销 AB两种型号的台灯,下表是两次进货情况统计:

进货情况

进货次数

进货数量(台)

进货资金(元)

A

B

第一次

5

3

230

第二次

10

4

440

(1)求 AB两种型号台灯的进价各为多少元?

(2)经试销发现, A型号台灯售价 x(元)与销售数量 y(台)满足关系式2 x+ y=140,此商场决定两种型号台灯共进货100台,并一周内全部售出,若 B型号台灯售价定为20元,求 A型号台灯售价定为多少时,商场可获得最大利润?并通过计算说明商场获得最大利润时的进货方案.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号