如图所示,电源电动势E=10V,内阻r=1Ω,闭合电键S后,标有“,
”的灯泡恰能正常发光,电动机M绕组的电阻R0=4Ω,求:
(1)电源的输出功率P0;
(2)10s内电动机产生的热量Q;
(3)电动机的效率;
(4)若用此电动机由静止开始加速提升一质量为0.5kg的物体,10s末物体的速度达到4m/s,且在这一过程中电动机输出功率保持不变,物体也不会碰到电动机,求物体在这10s内上升的高度h(忽略空气阻力和一切摩擦作用).
如图所示,A、B是两块竖直放置的平行金属板,相距为2l,分别带有等量的负、正电荷,在两板间形成电场强度大小为E的匀强电场,A板上有一小孔(它的存在对两极板间的匀强电场分布的影响可忽略不计)。孔的下沿右侧有一条与板垂直的水平光滑绝缘轨道,一个质量为m、电荷量q(q>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处,孔的下沿左侧也有一与板垂直的水平光滑绝缘轨道,轨道上距A板l处有一固定挡板,长为l的轻弹簧左端固定在挡板上,右端固定一块轻小的绝缘材料制成的薄板Q,撤去外力释放带电小球,它将在电场力作用下由静止开始向左运动,穿过小孔(不与金属板A接触)后与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中,不损失机械能,小球从接触Q开始,经历时间,第一次把弹簧压缩至最短,然后又被弹簧弹回,由于薄板Q的绝缘性能有所欠缺,使得小球每次离开弹簧的瞬间,小球的电荷量都损失一部分,而变成该次刚与弹簧接触时小球电荷量的
(k大于1)
(1)求小球第一次接触Q时的速度大小;
(2)假设小球被第n次弹回后向右运动的最远处没有到B板,试导出小球从第n次接触Q到本次向右运动至最远处的时间的表达式;
(3)假设小球经若干次弹回后向右运动的最远点恰好能到达B板,求小球从开始释放至刚好到达B点经历的时间
如图所示,在光滑绝缘的水平面上固定着两对几何形状完全相同的平行金属板P、Q和M、N,P、Q和M、N四块金属板相互平行地竖直放置。已知P、Q之间以及M、N之间的距离都是d=0.2m,极板本身的厚度不计,极板长均为L=0.2m,板间电压都是U=6V且P板电势高于Q板电势,金属板右侧边界以外存在竖直向下的匀强磁场,磁感应强度B=5T,磁场区域足够大,现有一质量m=,电量q=-
的小球在水平面上以初速度
=4m/s从平行板PQ间左侧中点
沿极板中线
射入,假设电场仅存在于平行板之间,空气阻力可忽略。
(1)试求小球刚穿出平行金属板P、Q时的速度;
(2)若要小球穿出平行金属板P、Q后,经磁场偏转射入平行金属板M、N中,且在不与极板相碰的前提下,最终从极板M、N的左侧中点沿中线
射出,则金属板Q、M间的距离是多少?
由相同材料的木板搭成的轨道如图,其中木板AB、BC、CD、DE、EF……长均为L=1.5m,木板OA和其它木板与水平地面的夹角都为β=37°(sin37°=0.6,cos37°=0.8),一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,即不损失动能,也不会脱离轨道,在以后的运动过程中,(),问:
(1)物体能否静止在木板上?请说明理由;
(2)物体运动的总路程是多少?
(3)物体最终停在何处?并作出解释。
如图所示,平行光滑U形导轨倾斜放置,倾角,导轨间的距离L=1.0m,电阻R=
=3.0Ω,电容器电容C=
,导轨电阻不计,匀强磁场的方向垂直于导轨平面向上,磁感应强度B=2.0T,质量m=0.4kg,电阻r=1.0Ω的金属棒ab垂直置于导轨上,现用沿轨道平面且垂直于金属棒的大小F=5.0N的恒力,使金属棒ab从静止起沿导轨向上滑行,求:
(1)金属棒ab达到匀速运动时的速度大小();
(2)金属棒ab从静止开始匀速运动的过程中通过电阻的电荷量。
如图所示,一质量为m的光滑弧形槽固定在光滑水平面上,弧形槽的高为h,一质量为m的物块B静止放在光滑水平面上O点,B上连一轻弹簧,现让一质量也为m的物块从弧形槽的顶端由静止下滑,问:
(1)弹簧能获得的最大弹性势能多大?
(2)若弧形槽不固定,则物块A滑下后,与弹簧相碰,弹簧获得的最大弹性势能又为多大?