如图所示,某潜水员在检查装有透明液体的圆柱体容器,当潜水员的眼睛在容器中心轴位置且在液面下h2=1m处时,他看到容器口处所有景物都出现在一个顶角为60°的倒立圆锥里,已知容器口距离容器液面的距离h1=1m,圆柱体的横切面半径。
①求容器中液体的折射率。
②若一个身高h3=1m的小孩站在离容器口边缘远的位置,小孩恰好能看到对面的容器底部,则容器中液体的深度为多少米?
在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来.假设着陆器第一次落到火星表面弹起后,到达最高点时的高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力.已知火星的一个卫星的圆轨道的半径为r,周期为T.火星可视为半径为r0的均匀球体.
如图,在光滑的倾角为θ的固定斜面上放一个劈形的物体A,其上表面水平,质量为M.物体B质量为m,B放在A的上面,先用手固定住A.
(1)若A的上表面粗糙,放手后,求AB相对静止一起沿斜面下滑,B对A的压力大小.
(2)若A的上表面光滑,求放手后的瞬间,B对A的压力大小.
如图所示,在竖直平面的xoy坐标系内,一根长为l的不可伸长的细绳,一端固定在拉力传感器A上,另一端系一质量为m的小球.x轴上的P点固定一个表面光滑的小钉,P点与传感器A相距.现拉小球使细绳绷直并处在水平位置,然后由静止释放小球,当细绳碰到钉子后,小球可以绕钉子在竖直平面内做圆周运动.已知重力加速度大小为g,求:
(1)若小球经过最低点时拉力传感器的示数为7mg,求此时小球的速度大小;
(2)传感器A与坐标原点O之间的距离;
(3)若小球经过最低点时绳子恰好断开,请确定小球经过y轴的位置.
如图所示,竖直平面内四分之一光滑圆弧轨道AP和水平传送带PC相切于P点,圆弧轨道的圆心为O,半径为R=5m,一质量为m=2kg的小物块从圆弧顶点由静止开始沿轨道下滑,再滑上传送带PC,传送带可以速度v=5m/s沿顺时针或逆时针方向的传动.小物块与传送带间的动摩擦因数为μ=0.5,不计物体经过圆弧轨道与传送带连接处P时的机械能损失,重力加速度为g=10m/s2.
(1)求小物体滑到P点时对圆弧轨道的压力;
(2)若传送带沿逆时针方向传动,物块恰能滑到右端C,问传送带PC之间的距离L为多大.
如图所示,水平轨道上,轻弹簧左端固定,自然状态时右端位于P点.现用一质量m=0.1kg的小物块(视为质点)将弹簧压缩后释放,物块经过P点时的速度v0=18m/s,经过水平轨道右端Q点后恰好沿半圆轨道的切线进入竖直固定的圆轨道,最后滑上质量M=0.9kg的长木板(木板足够长,物块滑上去不会从木板上掉下来).已知PQ间的距离l=1m,竖直半圆轨道光滑且半径R=1m,物块与水平轨道间的动摩擦因数µ1=0.15,与木板间的动摩擦因数µ2=0.2,木板与水平地面间的动摩擦因数µ3=0.01,取g=10m/s2.
(1)判断物块经过Q点后能否沿圆周轨道运动;
(2)求木板滑行的最大距离x.