一轻质细绳一端系一质量为m=
kg的小球A,另一端挂在光滑水平轴O上,O到小球的距离为L=0.1m,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示,水平面长s=2m,动摩擦因数为μ=0.25.现有一滑块B,质量也为m,从斜面上滑下,每次与小球碰撞时相互交换速度,且与挡板碰撞时不损失机械能.若不计空气阻力,并将滑块和小球都视为质点,g取10m/s2,(斜面底端和水平面光滑连接).试问:
(1)若滑块B从斜面上高度h=3.2m处滑下,要保证运动过程中绳子不会断,绳子的最大承受拉力至少应为多大?
(2)若滑块B从斜面上高度h′处滑下与小球第一次碰后,使小球恰好在竖直平面内做完整的圆周运动,求此高度h′.
(3)若滑块B从H="2.8m" 处下滑与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数n.
1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t ;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E㎞。
(15分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg的质点, 选手抓住绳由静止开始摆动,此时绳与竖直方向夹角
=,绳的悬挂点O距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取重力加速度
,
,

(1)求选手摆到最低点时对绳拉力的大小F;
(2)若绳长l="2m," 选手摆到最高点时松手落入手中。设水对选手的平均浮力
,平均阻力
,求选手落入水中的深度
;
(3)若选手摆到最低点时松手, 小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。
在某些恒星内,3个α粒子可以结合成一个
核,已知
核的质量为1.99502×10-26kg, α粒子的质量为6.64672×10-27kg,真空中的光速c=3×108m/s,计算这个反应中所释放的核能(结果保留一位有效数字)。
(14分)如图所示,弧形轨道的下端与半径为R的圆轨道平滑连接。现在使小球从弧形轨道上端距地面2R的A点由静止滑下,进人圆轨道后沿圆轨道运动,轨道摩擦不计。
试求:
(1)小球到达圆轨道最低点B时的速度大小;
(2)小球在最低点B时对轨道的压力大小;
(3)小球在某高处脱离圆轨道后能到达的最大高度。
(14分)如图所示,在一宽度D="16" cm的区域内,同时存在相互垂直的匀强磁场B和匀强电场E,电场的方向竖直向上,磁场的方向垂直向外。一束带电粒子以速度
同时垂直电场和磁场的方向射入时,恰不改变运动方向。若粒子射入时只有电场,可测得粒子穿过电场时沿竖直方向向上偏移6.4 cm;若粒子射人时只有磁场,则粒子束离开磁场时偏离原方向的距离是多少?不计粒子的重力。