如图所示的螺线管的匝数n=1500,横截面积S=20cm2,电阻r=1.5Ω,与螺线管串联的外电阻=10Ω,R2=3.5Ω。若穿过螺线管的磁场的磁感应强度按图(b)所示的规律变化
求(1)螺线管两端M、N间的电压。
(2)上消耗的电功率。
如图所示,水平方向大小为B的匀强磁场的上下边界分别是MN、PQ,磁场宽度为L。一个边长为的正方形导线框(L>2
)从磁场上方竖直下落,线框的质量为m,电阻为R,运动过程中上下两边始终与磁场边界平行,若线框进入磁场过程中感应电流保持不变。(运动过程中空气阻力不计,重力加速度为g。)求:
(1)线框下端进入磁场时的速度;
(2)线框下端即将离开磁场时线框的加速度;
(3)若线框上端离开磁场时线框恰好保持平衡,求线框离开磁场的过程中流经线框电量q和线框完全通过磁场产生的热量Q。
如图所示,一个质量为m,带q(q >0)电量的粒子在BC边上的M点以速度v垂直于BC边飞入正三角形ABC。为了使该粒子能在AC边上的N点垂直于AC边飞出该三角形,可在适当的位置加一个垂直于纸面向里、磁感应强度为B的匀强磁场。若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力,试求:
(1)画出正三角形区域磁场的边长最小时的磁场区域及粒子运动的轨迹;
(2)该粒子在磁场里运动的时间t;
(3)该正三角形区域磁场的最小边长。
飞行时间质谱仪可对气体分子进行分析。如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生电荷量为q、质量为m的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器。已知a、b板间距为d,极板M、N的长度和间距均为L。不计离子重力及进入a板时的初速度。
(1)当a、b间的电压为U1,在M、N间加上适当的电压U2,使离子到达探测器。求离子到达探测器的全部飞行时间。
(2)为保证离子不打在极板上,试求U2与U1的关系。
如图所示空间分为Ⅰ,Ⅱ,Ⅲ三个足够长的区域,各边界面相互平行,其中Ⅰ、Ⅱ区域存在匀强电场EI=1.0×104 V/m,方向垂直边界面竖直向上;EⅡ=×105 V/m,方向水平向右,Ⅲ区域磁感应强度B=5.0 T,方向垂直纸面向里,三个区域宽度分别为d1=5.0 m,d2=4.0 m,d3=10
m。一质量m=1.0×10-8 kg、电荷量q=1.6×10-6C的粒子从O点由静止释放,粒子重力忽略不计。求:
(1)粒子离开区域Ⅰ时的速度大小;
(2)粒子从区域Ⅱ进入区域Ⅲ时的速度方向与边界面的夹角;
(3)粒子从O点开始到离开Ⅲ区域时所用的时间。
如图是有两个量程的电流表,当使用a、b两个端点时,量程为3A,当使用a、c两个端点时,量程为0.6A。已知表头的内阻Rg为200Ω,满偏电流Ig为2mA,求电阻R1、R2的值。