若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,有下列命题: ①在内单调递增; ②和之间存在“隔离直线”,且的最小值为; ③和之间存在“隔离直线”,且的取值范围是; ④和之间存在唯一的“隔离直线”. 其中真命题的个数有( )
在下列各组向量中,能作为表示它们所在平面内所有向量的基底的是()
直线的倾斜角是()
设等差数列的前n项和为,已知,则下列结论中正确的是()
在中,,,则的面积为()
一家冷饮厂每个月都要对大型冰激凌机进行维修,维修人员发现,维修费用与时间的关系:第个月的维修费为元,买这种冰激凌机花费元,使用年报废,那么这台冰激凌机从投入使用到报废,每天的消耗是() (注:机器从投入生产到报废共付出的维修费用与购买费用之和平均到每一天叫做每天的消耗;一年按天计算.)
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号