如图,已知三棱锥P-ABC中,PC⊥平面ABC,AB⊥BC,PC=BC=4,AB=2,E、F分别是PB、PA的中点.
(1)求证:侧面PAB⊥侧面PBC;
(2)求三棱锥P-CEF的外接球的表面积.
某中学高三(1)班共有50名学生,他们每天自主学习的时间在180到330分钟之间,将全班学生的自主学习时间作分组统计,得其频率分布如下表所示:
组序 |
分组 |
频数 |
频率 |
第一组 |
[180,210) |
5 |
0.1 |
第二组 |
[210,240) |
10 |
0.2 |
第三组 |
[240,270) |
12 |
0.24 |
第四组 |
[270,300) |
a |
b |
第五组 |
[300,330) |
6 |
c |
(1)求表中a、b、c的值;
(2)某课题小组为了研究自主学习时间与成绩的相关性,需用分层抽样的方法从这50名学生中随机抽取20名作统计分析,则在第二组学生中应抽取多少人?
(3)已知第一组学生中有3名男生和2名女生,从这5名学生中随机抽取2人,求恰好抽到1名男生和1名女生的概率.
已知函数的最小正周期为π.
(1)求的值;
(2)求当时
的值域.
已知函数(x∈R).
(1)当时,求
的单调区间;
(2)求证:对任意实数,有
.
等比数列中的前三项a1、a2、a3分别是下面数阵中第一、二、三行中的某三个数,且三个数不在同一列.
(1)求此数列的通项公式;
(2)若数列满足
,求数列
的前n项和
.