如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A、点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在点P、Q运动过程中,∠CMQ变化吗?若变化,则说明理由;若不变,则求出它的度数。
(2)求何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,说明理由;若不变,求出它的度数。
已知:如图,⊙的直径
与弦
(不是直径)交于点
,若
=2,
,求
的长.
已知:一次函数y=2x+1与y轴交于点C,点A(1,n)是该函数与反比例函数在第一象限内的交点.
(1)求点的坐标及
的值;
(2)试在轴上确定一点
,使
,求出点
的坐标.
如图,在△ABC中,BD⊥AC于点D,,
,并且
.求
的长.
已知:二次函数的图象开口向上,并且经过原点
.
(1)求的值;
(2)用配方法求出这个二次函数图象的顶点坐标.
已知:抛物线与x轴交于点A、B(A左B右),其中点B的坐标为(7,0),设抛物线的顶点为C.
(1)求抛物线的解析式和点C的坐标;
(2)如图1,若AC交y轴于点D,过D点作DE∥AB交BC于E.点P为DE上一动点,PF⊥AC于F,PG⊥BC于G.设点P的横坐标为a,四边形CFPG的面积为y,求y与a的函数关系式和y的最大值;
(3)如图2,在条件(2)下,过P作PH⊥x轴于点H,连结FH、GH,是否存在点P,使得△PFH与△PHG相似?若存在,求出P点坐标;若不存在,说明理由.