阅读:如图(1),点P(x,y)在平面直角坐标系中,过点P作PA⊥x轴,垂足为A,将点P绕垂足A顺时针旋转角得到对应点
,我们称点P到点
的运动为倾斜
运动.例如:点
倾斜30°运动后的对应点为
.图形E在平面直角坐标系中,图形E上的所有点都作倾斜
运动后得到图形
,这样的运动称为图形E的倾斜
运动.
理解:(1)点倾斜60°运动后的对应点
的坐标为 ;
(2)如图(2),平行于x轴的线段MN倾斜运动后得到对应线段
,
与MN平行且相等吗?说明理由.
应用:(1)如图(3),正方形AOBC倾斜运动后,其各边中点E,F,G,H的对应点
,
,
,
构成的四边形是什么特殊四边形: ;
(2)如图(4),已知点A(0,4), B(2,0),C(3,2),将△ABC倾斜运动后能不能得到
, 且
为直角?其中点
,
,
为点A,B,C的对应点.若能,请写出
的值,若不能,请说明理由.参考公式:
.
如图:点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米,⊙A以每秒2厘米的速度自左向右运动,于此同时,⊙B的半径也不断增大,其半径(厘米)与时间
(秒)之间的关系式为
(
≥0).
(1)试写出点A、B之间的距离(厘米)与时间
(秒)之间的函数表达式.
(2)问点A出发后多少秒两圆相切?
两个大小相同且含30°角的三角板ABC和DEC如图(1)摆放,使直角顶点重合.将图(1)中△DEC绕点C逆时针旋转30°得到图(2),点F、G分别是CD、DE与AB的交点,点H是DE与AC的交点.
(1)不添加辅助线,写出图(2)中所有与△BCF全等的三角形;
(2)将图(2)中的△DEC绕点C逆时针旋转45°得△D1E1C,点F、G、H的对应点分别为F1、G1、H1,如图(3),探究线段D1F1与AH1之间的数量关系,并写出推理过程;
(3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I=CI.
AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=5,求AB的长.
列方程解应用题:
如图,有一块矩形纸板,长为20,宽为14
,在它的四角各切去一个同样的正方形,然后将四周突出部分沿虚线折起;就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为160
,那么纸板各角应切去边长为多大的正方形?
如图,Rt△ABC中,∠C=90°,∠A=30°,AB=2.
(1)用尺规作图,作出△ABC绕点A逆时针旋转60°后得到的AB1Cl(不写画法,保留图画痕迹);
结论:__________为所求.
(2)在(1)的条件下,连接B1C,求B1C的长.