如图所示,半径为L1=2m的金属圆环内上、下半圆各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1= T.长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端沿逆时针方向匀速转动,角速度为ω=
rad/s.通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1=R,滑片P位于R2的正中央,R2的总阻值为4R),图中的平行板长度为L2=2m,宽度为d=2m.图示位置为计时起点,在平行板左边缘中央处刚好有一带电粒子以初速度v0=0.5m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射的影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力)求:
(1)在0~4s内,平行板间的电势差UMN;
(2)带电粒子飞出电场时的速度;
(3)在上述前提下若粒子离开磁场后不会第二次进入电场,则磁感应强度B2应满足的条件.
一电荷量为q(q>0)、质量为m的带电粒子在匀强电场的作用下,在t=0时由静止开始运动,场强随时间变化的规律如图所示。不计重力,求在t=0到t=T的时间间隔内:
(1)粒子位移的大小和方向;
(2)粒子沿初始电场反方向运动的时间。
如图所示,真空中水平放置的两个相同极板Y和Y'长为l,相距d,足够大的竖直屏与两板右侧边缘相距b。在两板间加上可调偏转电压U'。一束质量为m、带电荷量为+q的粒子(不计重力)从两板左侧中点A以初速度v0沿水平方向射入电场且能穿出。
(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O点;
(2)求两板间所加偏转电压U的范围;
(3)求粒子可能到达屏上区域的长度。
如图所示,直线MN表示一条平直公路,甲、乙两辆汽车原来停在A.B两处,A.B间的距离为85 m,现甲车先开始向右做匀加速直线运动,加速度a1=2.5 m/s2,甲车运动6.0 s时,乙车开始向右做匀加速直线运动,加速度a2=5.0 m/s2,求两辆汽车相遇处距A处的距离.
如图所示,两个质量均为m的小环套在一水平放置的粗糙长杆上,两根长度均为l的轻绳一端系在小环上,另一端系在质量为M的木块上,两个小环之间的距离也为l,小环保持静止.(认为最大静摩擦力等于滑动摩擦力).试求:
(1)每根绳的拉力多大;
(2)水平杆对每个小环的支持力;
(3)小环与杆之间的动摩擦因数μ至少为多大?
如图所示,一物体由底端D点以v0=4m/s的速度匀减速滑上固定的光滑斜面,途径A.B两点.已知物体在A点时的速度是B点时的2倍;由B点再经过0.5s,滑到斜面最高点C时恰好速度为零.设SAB=0.75m,求:
(1)斜面的长度;
(2)物体由底端D点滑到B点时所需的时间